AUTHOR TITLE

INSTITUTION
PUB DATE
NOTE
PUB TYPE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

ABSTRACT

Poor, minority, and low ability students suffer most from the general lack of sustained opportunity to study mathematics in American public schools. Studies indicate that preschool and kindergarten students show only minor social class or racial differences in mathematical thinking and that differences in mathematical performance among older students directly relate to the amount of math studied. A 1978 National Assessment of Educational Progress study of selected $9=$, $13-$, and l7-year-olds indicates that while the majority of American lyyear-olds have had 2 years of high school mathematics, black students have had only one year. While the National Assessment found no racial differences in cognitive level performance in mathematics, blacks had increasing difficulty with mathematical content as they became older. At age 9 , blacks showed probiems with variables and relationships; by age 17 , they showed problems in all mathematical content areas. Although black students showed more positive attitudes towards math learning than their white counterparts at all age levels tested, this motivation alone was not sufficient to insure successful math performance. The National Diffusion Network offers a catalog of successful public school mathematics education programs. Most effective programs have included the following elements: individualized and smail group instruction, calculator usage, laboratory work, cross-age tutoring, remedi al pull out, and tearn games. (Lp)

[^0]ERIC Clearinghouse on Urban Education
U.S. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUEATION EDUGATIONAL RESOURGES INFOAMATION CENTER IEAIC!
The docurinent has been roproduced as receved from the person of bigamation orgmating 1 :
 Teproducime minhty

- Foints ef view or upinioño statud if ing docu
 Destiogn ar prolicy.
"PEAMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY
Card Ascher

TO THE EDUCATIONAL RESOURGES information centea (EAIC):"
(212) $678 \cdot 3437$

IMPROVING THE MATHEMATICAL SKILLS OF LOW ACHIEVERS

For come years educators have known that s-merigan students perform more poorly in mathematics than do students in other major industrial nations. such as England. France. Sweden and Japan (9). Concern has also grown about the increased mathe= matical skills needed in an chectronic age. Vot surprisingly, poor, minority, and low-ability students sutfer most from what, in this country, is a general lack of sustained opportunity to sudy mathematics throughout the school years. Whateve: the term used for these disadvantaged students, and whatever the complex sources of their problems in mathematics. these low-income, innerxity, miñorities or low aehievers tend to be placed togethér early in their shooling and to be faught by the same instructional methods. by the same teachers, in the same classes, and their problems in mathemathes rapidly become similar both diagnostically and in their treatment.

Aecording to a 1978 Vational Assessment of Edueational Progress (1). a study of $9=13$ - and 17 -year-olds in a carefully selected sumple of 70,000 showed blacks about 11 percentage points below the national average in mathematics at age 9 : 15 percentage points below at age 13 , and 17 percentage points below the national average at age 17. It should be pointed out, however, that although the natoonal average of mathematics scores for all students declined between 1973 and 1978, black students redueed their comparative lag by 1 or 2 points during these years.

Clearly, one souret of the low mathematics scores in general is lack of contact with mathematics curriculum. According to the Vationā! Assessment (1), performance both nationally and for black students directly relates to the amouni of mathematics studied, and the low scores of the black siudents are connected to their low enrollment in mathematics after grade 10 . At present, the majority of the nation's 17 -vear-olds have taken two years of high schooi mathematics. while black studeots average a mere year. Seeking to remedy the defieiency for both groups. the Vational Councll of Teachers of Mathematics (13) proposed a requirement of three years of mathematics in grades 9 through 12 .

Specilic Mathematical Aptitudes and Skills of Low Achievers

Studies of the mathematical aptitude and skill of black and other loweincome students a pproach the issue from a variety of perspectives. Some merely scek to describe those areas or capacities where there is weakness and strength; others relate aptitudes and skilles to motivation: and others attempt to develop instruetional methods tō match studeñ learning stylés.

A study of the mathematical thinking of innerecity preschool and kindergarten children indicates that only miñor social class or race differences exist in these early years, and that all racial and social class groups improve in their pefformance between preschool and kindergarten (15). A few studies repert that diead vantaged females perform betuer than their male peers in the mastery of numerieal operations and concepts in grades $I=3$, with boys slowly gaining on the girls-by way of comparison with the general population, no sex differences exist during the early grades, but boys soon lake the lead (7, 12).

The Vational Assessment, which tested $9=13=$ and 17 yever-olds, evaluated several mathematics sontent areas over four cogntive leveis: knowledge, skill, undersianding, and application. Aceording to the survey, the pattern of strengths and weaknesses over these four cognitise levels was the same for blacksand all other students at all age levels, and no cogñitive level was disproportionately more dificult lor blacks than it was for the nation's students as a whole (1). For both groups at all ages, problems in understanding and application were more serious than those in knowledge and skills. Vot surprisingly, the Vational Council af Teachers of Mathematics (13) recommends as a foeus for the 1980 s the teaching of problem solving, including the ability to probe, explore, and apply mathematical eoncepts in relation to real world problems. and to select and match strategies to the situation at hand.

While cognitivelevel pertormance appears to be the same for black and white students, specific content areas emerge as particular problems for black students, at least at some age levels. Aceord= ing to the vational Assessment, variables and relationships are sources of special conent problems among biack students at age 9 : at age 13 and 17 . variables and relationship: is well as measure $=$ meni cause particular problems: and at age 17. problems are sugeested in all the content areas, including numbers and numeratioñ, variables and relationships. geometry, and measurement (g). An analysis of the scores of 8th graders on the lllinois Inventory of Educational Progress (10) indicates that black siudents have particular problems with questions about the metric system. those involving definitions, and those based on gaphe and figures: at the same time. these students are partieulary suceessful with story problems involving money and symbol substitution.

It hus been suggested that minority students can better solve mathematical problems that have concrete or practical implications, or that are related to their own lives and convey a positive image of themselves and their culture (6). Projects for younger students stress physieal manipulation as central to the enhaneement of learning for this group (17),

A number of investigations have related the cognitive styles of fieid-independence and field-dependence to learning ability in mathematics and other subjects. The general view is that fieldindependent students have greater personal autonomy and tend to be better at analyzing and imposing organization on poorly organized stimuli as well as ignoring distracting eues, while field= dependent students are léss profielent al cognitive restructuring. Siudies also tend to show disadvantaged stidents as more likely to be fièld-depeñdent than the general population. Proceeding from this line of research, one investigation found that indivi= dualized instruction with immediate reinforcements enabled fieid-dependent, disadvantager studenis in the 5th grade to do as well as field-independent students in mathematical learning (11).

Some Affective Considerations

The attitudes of black students toward mathematics indicate that positive motivation alone does not bring success, nor does falure in a field necessarily turn one against it. The Vational

Assesment shows positive attitudes on the part of black studenis towards mathematics and toward themseltes as learners of mathematies. At iges 9,13 , and 17.69 pereent. 69 pereent, and 64 percent. respectively saf they like mathematus fompared to shighty lower percentages for the nation as a whole). and at every level they thinh it is the thost important subiect in sehool. Oier 90 pereent wint to do seell and tay they are willing to work hard to do so. Although they take tever mathematues courses than their white peers, biack sudents aetually indicale a greater desire for the courses.

The Vatonal Assessment data may simplify the issue, however. as they recurd exprested desires and intentions, at best, and, at worg. may even retlect what students think they ought to say-The hurgeoning literature on muthematies anviety sugests that anxiety (which presumably conlicts with simple pleasure in a subject) is strongly associzted with underachievement in mathematics as well as other academie subjects. Aecording to one recent study of mathematics achevement among $\mid i=$ and laterear=olds, measures of roathematics-specific anxiety differentiated the underachieving group from acnievers and overachievers mofe strongly than messures of general anxiety and test anxiety (16). The sudy also conlïrns slight differchets in mathematics anxiety betwen the sexes, with il-and $1 \mathbf{i}$-yearold girls experiencing somewhat more anxiety than boys.

Instructional Programs

There are a number of studies and program evaluations of teaching mathematics to disadvantaged students at all ages. Though much of the research argues tor the effectiveness of "active teaching" or "direct instruction" (3, 4, 5), "indirect" or "índivi= dualized instruetion" is also shown to be effectise, particularly in the preschool and elementary grades (2. (1).

The Vational Diffusion Vetwork offers a catalog of Edtuational Programs that Work (l4). The eatalog includes progrtms in mathematics that have been proven successful for students of all uges. Those successful projects, disseminated by the $\mathcal{V} D$ vaver the range of the public school years, and may be casily as well as inexpensively instuted. They include such programmatic ele= ments as

- individualined instruction
- salculator usave
- diagnostic testing with
prestriptive planning
- laboratory work
- remedial pull-out
- cross-age futoring

Edicotiond Programs that Work also lists programs not disteminted by the Vational Dilfusion Vetwork. These are largely programs that are more difficultorexpenxive to institute, although their suecess is equal to that of the VD V projects; they also tend to be for grades $k-3$, the early years when intervention may actually do greater good. An example of sueh a major program is DISTAR. a direct instructional approach. Other elements in sinularly successtul projects include

- eareful monitoring
- highly structured inctruction
- positive reinforcement
- repid pacing
- parent involvemant
- Femedial pull-ou:
- criterion-referenced iesting
- planned sequerecs
- a combination of structured and nonstruetured instruction

Clearly, no single method has emerged as most effective: there are a variety of instructional methods that work. However the opportunty io learn mathematies through a sufficient number of hours of weekly elassroom time and years of courses is funda= mental. Sehools need to be thexibly organized so that all students. inctuding low-achievers, can take a variety of individually-tilored mathematicn programs that ultimatley provide access to advanced mathematical learning. As the Vational Council of Teachers of Mathematics (13. p.i) has stated:

It is important that recommended programs permil lateral movement and not strictly "irack" students. trapping them in a linear pattern that does not permit change to another path. Flexibility is vital, and the key is to keep options open as long as possible.
Since a higher level of mathematical skill and understanding will increasingly becomea significaniadvantage in nearly all lives, then justice demands that all groups have equal aceess to these advantages.

- small groups
- ongoing diagnoses
- child-initiated or selfregulated instruetion
- direct manipulation of the envorummet
- computcrassisted intiruction.

REFERENCES

 mintis Trainar 14.7 19月!
1 기 Hecher. K : Teacher Behavora Related to the Anthemaneal Achevement ul

 minuay meeing of the American Educational Keseateh Assbetatons Los

 Summary, Vewion, tA: Educitonal Development Cenier, lifg. isp. ED 139 179.

 701 69 ?
 John wiley st Sons. 1967.

* criterion-referenced testing
- Enall group instruction
- manipulative iñetruetional materials
- student responsiveness
- team games.

 mectug of the Amefican Educational Reseach Agsoention, San Fran=

(II) Kornbluth. J.A. and Sabban, Y.P. "The Elfecis of Cognitive Sile and Siudy Hefhod an biahematieal Achievement of Disaduantaged Siudenis:

(i) Whecoby, E.E. and Jacklin. C. V. The Pinhology af ser Differfizat Etanford: Sinnord Universtiy Press. 1974
(ll) valonal Council for Teachers of Mathemates An Agende for Acion
 Couneti. 19×0.
(I4) Vational Dificion Vetwork, U.S. Depariment of Edueation Edurational Pro-
 Jon Dingmingmon Revéw Pgnci. Jan Francisoo. GA: Far West Labora

(I5) Ruseell, R. L. and Ginsburg. H. The Matiematral Thinking of Poor Inner City C.hbureñ. Paper presented at the Southeastern Coniefónce oñ Human

 searth 72.1 (1978) $15=19$.

[^0]: ****************************•**

 * Reproductions supplied by EDRS are the best that can be made

